《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 设计应用 > 基于DeepLabv3的随机褶皱防伪图案识别研究
基于DeepLabv3的随机褶皱防伪图案识别研究
信息技术与网络安全
陈 雨1,陈桂雄1,周雄图1,2,张永爱1,2,林志贤1,2,吴朝兴1,2,郭太良1,2
(1.福州大学 物理与信息工程学院,福建 福州350116; 2.中国福建光电信息科学与技术创新实验室,福建 福州350116)
摘要: 针对现有防伪技术可靠性较低、容易被仿制、防伪成本高昂等问题,基于DeepLabv3,提出一种由热膨胀系数失配产生压缩应力形成随机褶皱防伪标识图案的识别方法。具体采用深度卷积网络分类算法中DeepLabv3进行分类识别,通过优化全连接层并设置不同的神经元节点,提高识别网络的分类准确率,缩减训练时间,训练准确率达96.58%,获得了能对褶皱纹理图案精准识别的网络模型,实现具有安全性的防伪目的。
中圖分類號: TP391
文獻(xiàn)標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.02.007
引用格式: 陳雨,陳桂雄,周雄圖,等. 基于DeepLabv3的隨機(jī)褶皺防偽圖案識別研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(2):39-44.
Research on the recognition of anti-counterfeiting pattern based on DeepLabv3
Chen Yu1,Chen Guixiong1,Zhou Xiongtu1,2,Zhang Yongai1,2,Lin Zhixian1,2,Wu Chaoxing1,2,Guo Tailiang1,2
(1.College of Physics and Information Engineering,Fuzhou University,Fuzhou 350116,China; 2.Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350116,China)
Abstract: In view of the problems of anti-counterfeiting technology, such as cloneable, low reliability, and high cost, this paper proposed an identification method for random wrinkle formed by compressive stress caused by the mismatch of thermal expansion index. The paper used DeepLabv3, a edge of deep convolution network classification algorithm, for classification and recognition. Through optimizing the full connectivity layer and setting different neuron nodes, the classification accuracy of recognition network was improved, the training time was reduced, the training accuracy rate was as high as 96.58%, the network model for accurate recognition of wrinkle texture pattern was acquired, and the security purpose of anti-counterfeiting was realized.
Key words : anti-counterfeiting;deep learning;DeepLabv3;image classification Artificial Intelligence

0 引言

         市場中假冒產(chǎn)品的存在會對國家、社會和個(gè)人帶來巨大經(jīng)濟(jì)損失,防偽成為應(yīng)用廣泛的反制技術(shù)。由于整個(gè)防偽市場不規(guī)范,防偽技術(shù)產(chǎn)品水平偏低,妨礙了市場的健康發(fā)展,公眾對防偽產(chǎn)品的信任度在降低。目前,許多被開發(fā)的防偽標(biāo)簽具有物理上不可克隆的特征,如散射表面的隨機(jī)圖案、隨機(jī)分布的納米顆粒圖案和液晶紋理等。褶皺圖案是自然界生物體和工程材料領(lǐng)域常見的特殊現(xiàn)象,是一種微觀的隨機(jī)地形,擁有著廣泛而不可復(fù)制的信息,在防偽技術(shù)上有廣泛的應(yīng)用前景。




本文詳細(xì)內(nèi)容請下載:http://m.ihrv.cn/resource/share/2000003377




作者信息:

陳  雨1,陳桂雄1,周雄圖1,2,張永愛1,2,林志賢1,2,吳朝興1,2,郭太良1,2

(1.福州大學(xué) 物理與信息工程學(xué)院,福建 福州350116; 2.中國福建光電信息科學(xué)與技術(shù)創(chuàng)新實(shí)驗(yàn)室,福建 福州350116)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容