《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信与网络 > 设计应用 > 基于深度残差神经网络的博彩网页识别算法设计
基于深度残差神经网络的博彩网页识别算法设计
2022年电子技术应用第2期
张 聪,张 恒,张立坤,赵 彤,邓桂英
中国互联网络信息中心 技术研发部,北京100190
摘要: 互联网对人民群众的生活和工作产生了重要影响,然而网络空间中隐藏着大量有害的博彩网站或赌博网站,很容易给网民造成损失和困扰,甚至可能扰乱社会秩序,因而研究对此类网站进行高效识别的方法具有重要意义。提出利用深度残差神经网络解决博彩类网页识别问题,基于深度残差网络的原理设计了算法GamblingRec。经验证,算法准确率达到了95.16%,正样本召回率为93.21%,表明基于深度残差神经网络的方法能够用于博彩类网页识别,并能达到较高的识别性能。
中圖分類號(hào): TN91
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.211757
中文引用格式: 張聰,張恒,張立坤,等. 基于深度殘差神經(jīng)網(wǎng)絡(luò)的博彩網(wǎng)頁(yè)識(shí)別算法設(shè)計(jì)[J].電子技術(shù)應(yīng)用,2022,48(2):15-18.
英文引用格式: Zhang Cong,Zhang Heng,Zhang Likun,et al. Gambling web page recognition algorithm design based on deep residual neural network[J]. Application of Electronic Technique,2022,48(2):15-18.
Gambling web page recognition algorithm design based on deep residual neural network
Zhang Cong,Zhang Heng,Zhang Likun,Zhao Tong,Deng Guiying
Technological Research and Development Department,China Internet Network Information Center(CNNIC),Beijing 100190,China
Abstract: The Internet has an important impact on people′s life and work. However, there are a large number of harmful gambling websites hidden in cyberspace, which is easy to cause losses and troubles to netizens, it can even disturb society order. Therefore, it is of great significance to study the efficient recognition method of such websites. In this paper, the deep residual neural network is used to solve the problem of gambling web page recognition, and the algorithm GamblingRec is designed based on principle of deep residual network. The results show that the accuracy of GamblingRec reaches 95.16%, and the positive sample recall rate is 93.21%,which indicates that the method based on deep residual neural network can be applied for gambling web page recognition, and can achieve high recognition performance.
Key words : convolutional neural network;residual network;gambling;web page classification;ResNet

0 引言

    隨著互聯(lián)網(wǎng)技術(shù)的高速發(fā)展,我國(guó)網(wǎng)民人數(shù)持續(xù)增長(zhǎng),根據(jù)《第47次中國(guó)互聯(lián)網(wǎng)絡(luò)發(fā)展?fàn)顩r統(tǒng)計(jì)報(bào)告》的數(shù)據(jù),截至2020年12月,我國(guó)網(wǎng)民人數(shù)已達(dá)到9.89億[1],毫無(wú)疑問(wèn),互聯(lián)網(wǎng)已經(jīng)成為人們?nèi)粘I畈豢苫蛉钡囊徊糠?。然而,虛擬的網(wǎng)絡(luò)空間中隱藏著大量有害的博彩類型網(wǎng)站,極易給參與者造成經(jīng)濟(jì)損失,設(shè)計(jì)有效方法對(duì)博彩類網(wǎng)站進(jìn)行識(shí)別具有重要意義。

1 相關(guān)工作

    博彩網(wǎng)站識(shí)別相當(dāng)于對(duì)網(wǎng)頁(yè)進(jìn)行分類,預(yù)測(cè)其為博彩網(wǎng)頁(yè)或其他類型網(wǎng)頁(yè)。付順順[2]采用FastText[3]算法和Bootstrap[4]集成算法,利用網(wǎng)站文本數(shù)據(jù),提高了識(shí)別速度并減輕了正常網(wǎng)站和博彩網(wǎng)站數(shù)據(jù)不均衡問(wèn)題。唐喆[5]等人采用SVM[6]算法并提取不同的文本特征,實(shí)現(xiàn)對(duì)網(wǎng)頁(yè)的分類。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://m.ihrv.cn/resource/share/2000003959。




作者信息:

張  聰,張  恒,張立坤,趙  彤,鄧桂英

(中國(guó)互聯(lián)網(wǎng)絡(luò)信息中心 技術(shù)研發(fā)部,北京100190)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容