《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 设计应用 > 基于边缘计算的局部放电模式识别
基于边缘计算的局部放电模式识别
2022年电子技术应用第9期
宋佳骏,刘守豹,熊中浩
大唐水电科学技术研究院有限公司,四川 成都610074
摘要: 局部放电是设备处于高电场强下,由于电场分布不均而导致的绝缘介质放电现象,设备产生局部放电对于绝缘层的危害很大,迅速检测识别设备的放电类型是工业正常运作的保障。针对电气设备局部放电类型识别问题,考虑到电气设备监测系统在诊断识别方面的时效性及精度,提出了基于边缘计算的局部放电模式识别方法,利用边缘计算架构的优势,基于云层训练、边缘推理思路,将复杂的识别算法训练优化过程部署在云层,将计算量大的识别算法卸载到边缘层,而计算量小的特征提取保留在终端设备层处理。通过构造局部放电相位分布谱图提取局部放电的统计特征参数,采用粒子群优化算法对广义回归神经网络模型进行优化,最后将统计特征参数作为神经网络的输入量,对放电类型进行识别。结果表明,所提模式识别方法识别准确率高,识别效率高。
中圖分類號(hào): TN91;TM85
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.222525
中文引用格式: 宋佳駿,劉守豹,熊中浩. 基于邊緣計(jì)算的局部放電模式識(shí)別[J].電子技術(shù)應(yīng)用,2022,48(9):55-58,62.
英文引用格式: Song Jiajun,Liu Shoubao,Xiong Zhonghao. Partial discharge pattern recognition based on edge computing[J]. Application of Electronic Technique,2022,48(9):55-58,62.
Partial discharge pattern recognition based on edge computing
Song Jiajun,Liu Shoubao,Xiong Zhonghao
Datang Hydropower Science & Technology Research Institute Co.,Ltd.,Chengdu 610074,China
Abstract: Partial discharge is the phenomenon of dielectric discharge caused by uneven distribution of electric field under high electric field intensity. Partial discharge of equipment does great harm to the insulation layer. Rapid detection and identification of the discharge type of equipment is the guarantee of normal industrial operation. For electrical equipment for partial discharge type recognition problem, considering the electrical equipment monitoring system in the diagnosis of the timeliness and accuracy of recognition, this paper puts forward the partial discharge pattern recognition method based on edge calculation, using the advantage of edge computing architectures, edge of reasoning based on training, the clouds, the complex recognition algorithm training optimization deployment in the clouds. The recognition algorithm with large computation is offloaded to the edge layer, while the feature extraction with small computation is reserved to the terminal device layer. The statistical characteristic parameters of pd were extracted by constructing pd phase distribution spectrum, and the generalized regression neural network model was optimized by particle swarm optimization algorithm. Finally, the statistical characteristic parameters were used as the input of the neural network to identify the discharge types. The results show that the proposed pattern recognition method has high recognition accuracy and efficiency.
Key words : edge computing;partial discharge;pattern recognition;generalized regression neural network

0 引言

    電廠中高壓電氣設(shè)備在長(zhǎng)期運(yùn)行的情況下不可避免會(huì)出現(xiàn)各種各樣的劣化或者故障,對(duì)高壓電氣設(shè)備的實(shí)時(shí)監(jiān)測(cè)和故障預(yù)警不僅能保證設(shè)備的穩(wěn)定運(yùn)行,也能極大程度上提高供電可靠性[1]。隨著信息技術(shù)的發(fā)展,采用數(shù)字信號(hào)處理局部放電信號(hào)的技術(shù)愈發(fā)成熟,目前針對(duì)局部放電類型識(shí)別研究主要目的是提高缺陷識(shí)別精度,復(fù)雜的神經(jīng)網(wǎng)絡(luò)會(huì)占用大量計(jì)算資源,不符合工業(yè)運(yùn)作的實(shí)際需求響應(yīng)。在實(shí)際的監(jiān)測(cè)系統(tǒng)中,必須考慮計(jì)算機(jī)軟硬件資源環(huán)境的復(fù)雜程度以及識(shí)別算法的時(shí)延特性等問題[2-3]。

    在萬物互聯(lián)的大背景下,傳統(tǒng)云計(jì)算處理海量數(shù)據(jù)的能力顯得尤為不足,存在實(shí)時(shí)性不夠、帶寬不足、能耗較大以及數(shù)據(jù)安全性低等問題[4-5]。邊緣計(jì)算的出現(xiàn)使得上述問題得到有效的解決,針對(duì)局部放電數(shù)據(jù)采樣頻率高、數(shù)據(jù)處理復(fù)雜等特點(diǎn),本文提出了一種基于邊緣計(jì)算的局部放電模式識(shí)別方法,該方法將模式識(shí)別算法合理分配在邊緣計(jì)算框架中,有效地降低了云端計(jì)算壓力,在保證識(shí)別準(zhǔn)確性的情況下提高了數(shù)據(jù)處理的實(shí)時(shí)性。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://m.ihrv.cn/resource/share/2000004921




作者信息:

宋佳駿,劉守豹,熊中浩

(大唐水電科學(xué)技術(shù)研究院有限公司,四川 成都610074)



wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。