《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 设计应用 > 基于CNN和GRU的高阶调制自动编码器研究
基于CNN和GRU的高阶调制自动编码器研究
2023年电子技术应用第5期
蔚淦丞1,2,3,廖明军1,2,3,刘俊杰1,2,3,周雄1,2,3
(1.重庆邮电大学 通信与信息工程学院,重庆 400065;2.先进网络与智能互联技术重庆市高校重点实验室,重庆 400065; 3.泛在感知与互联重庆市重点实验室,重庆 400065)
摘要: 基于深度学习的自动编码器是替代传统通信发射器和接收器的一种新方法。提出了一种基于卷积神经网络(Convolutional Neural Network, CNN)和门递归单元(Gate Recurrent Unit, GRU)的自动编码器,集成了星座映射和信道编码功能。设计了一种并行CNN结构,并将输入比特流进行分段的one-hot编码。这样做有两个优点:(1)与不分段的one-hot编码相比,数据的维度降低了;(2)数据的稀疏性降低,这使网络可以更快更好地收敛。此外,引入GRU以实现信道编码。所提出的模型可以应用于高阶调制如4096QAM信号,在加性高斯白噪声(AWGN)信道和瑞利信道下都有着优于传统方法的性能。
關(guān)鍵詞: 自动编码器 CNN GRU 深度学习
中圖分類號:TN92
文獻(xiàn)標(biāo)志碼:A
DOI: 10.16157/j.issn.0258-7998.223583
中文引用格式: 蔚淦丞,廖明軍,劉俊杰,等. 基于CNN和GRU的高階調(diào)制自動編碼器研究[J]. 電子技術(shù)應(yīng)用,2023,49(5):41-46.
英文引用格式: Yu Gancheng,Liao Mingjun,Liu Junjie,et al. High order modulation autoencoder based on CNN and GRU[J]. Application of Electronic Technique,2023,49(5):41-46.
High order modulation autoencoder based on CNN and GRU
Yu Gancheng1,2,3,Liao Mingjun1,2,3,Liu Junjie1,2,3,Zhou Xiong1,2,3
(1.School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2.Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing 400065, China; 3.Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing 400065, China)
Abstract: Autoencoder (AE) based on deep learning is a new method to replace traditional communication transmitter and receiver. This paper proposes an autoencoder based on Convolutional Neural Network (CNN) and Gate Recurrent Unit (GRU), which integrates constellation mapping and channel coding. Specifically, this paper designs a parallel CNN structure and segment the input bitstream for one-hot encoding, which has two advantages:(1) Compared with the original one-hot encoding, the dimension of the input data is reduced; (2) The features of the data are not too sparse, which allows the network to converge faster and better. In addition, the GRU is introduced for channel coding. The proposed model can be applied to high-order modulation such as 4096QAM signal, and has better performance than traditional methods under both added white Gaussian noise (AWGN) channels and Rayleigh channels.
Key words : autoencoder;CNN;GRU;deep learning

0 引言

無線通信要解決的主要問題是如何從包含噪聲和干擾的接收信號中盡可能無差錯(cuò)地恢復(fù)發(fā)送信號。傳統(tǒng)方法通常以模塊化的方式設(shè)計(jì)和實(shí)現(xiàn)發(fā)射器和接收器,將每個(gè)模塊單獨(dú)優(yōu)化以獲得可靠的通信系統(tǒng)。然而這種“貪心”地將每個(gè)模塊優(yōu)化到最佳,并不意味著整個(gè)系統(tǒng)的性能達(dá)到了最佳。這是傳統(tǒng)通信系統(tǒng)長期存在的系統(tǒng)偏差。

近年來,隨著神經(jīng)網(wǎng)絡(luò)在計(jì)算機(jī)視覺、自然語言處理等領(lǐng)域的成功,無線通信領(lǐng)域也涌現(xiàn)出大量與深度學(xué)習(xí)結(jié)合的相關(guān)研究?;谏疃葘W(xué)習(xí)的端到端通信系統(tǒng)可以聯(lián)合優(yōu)化發(fā)送器和接收器,因此神經(jīng)網(wǎng)絡(luò)有很大的潛力成為下一代無線通信的主流技術(shù)。當(dāng)發(fā)射器和接收器分別被視為編碼器和解碼器,整個(gè)通信系統(tǒng)可以被視為一個(gè)自動編碼器。而這個(gè)自動編碼器唯一的優(yōu)化目標(biāo)就是信號的恢復(fù)精度——這也是衡量通信系統(tǒng)性能的唯一指標(biāo)。



本文詳細(xì)內(nèi)容請下載:http://m.ihrv.cn/resource/share/2000005322




作者信息:

蔚淦丞1,2,3,廖明軍1,2,3,劉俊杰1,2,3,周雄1,2,3

(1.重慶郵電大學(xué) 通信與信息工程學(xué)院,重慶 400065;2.先進(jìn)網(wǎng)絡(luò)與智能互聯(lián)技術(shù)重慶市高校重點(diǎn)實(shí)驗(yàn)室,重慶 400065;3.泛在感知與互聯(lián)重慶市重點(diǎn)實(shí)驗(yàn)室,重慶 400065)


微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容