基于EMD和ELM相结合的门诊量预测模型研究
网络安全与数据治理 6期
樊冲
(锦州市大数据管理中心,辽宁锦州121000)
摘要: 针对门诊量波动幅度较大的时间序列预测问题,先采用经验模态分解(EMD)将非线性较强的原始数据进行分解,然后通过极限学习机(ELM)将分解后的各个序列分量进行建模,最后将各个分量的预测值相加得出最终结果。将BP神经网络、ELM两个单一模型与EMDELM组合模型进行对比验证,实验结果表明组合模型的精准度明显好于两个单一模型。
中圖分類號:TP391
文獻標識碼:A
DOI:10.19358/j.issn.2097-1788.2023.06.016
引用格式:樊沖.基于EMD和ELM相結合的門診量預測模型研究[J].網(wǎng)絡安全與數(shù)據(jù)治理,2023,42(6):97-102.
文獻標識碼:A
DOI:10.19358/j.issn.2097-1788.2023.06.016
引用格式:樊沖.基于EMD和ELM相結合的門診量預測模型研究[J].網(wǎng)絡安全與數(shù)據(jù)治理,2023,42(6):97-102.
Research on outpatient volume prediction model based on the combination of EMD and ELM
Fan Chong
(Jinzhou Big Data Management Center,Jinzhou 121000,China)
Abstract: Aiming at the time series prediction with largefluctuations of outpatient volume, firstly, it is necessary to decompose original data with strong nonlinearity by Empirical Mode Decomposition (EMD), model these decomposed sequence components by Extreme Learning Machine (ELM), and then sum up the prediction volume of these sequence components and finally draw a conclusion. The single models of BP neural network and ELM were compared and verified with the combined model of EMDELM, and it was found that the accuracy of the combined model was significantly better than that of the single models according to the experimental outcomes.
Key words : prediction model; time series; prediction of outpatient volume; Extreme Learning Machine(ELM); Empirical Mode Decomposition(EMD)
0 引言
門診工作是現(xiàn)代醫(yī)療工作中非常重要的一環(huán),同時日常的門診量也反映著醫(yī)院實時的運行狀態(tài),準確地對醫(yī)院門診量進行有效預測,既能為醫(yī)院管理人員進行資源合理配置提供重要參考,也能為醫(yī)院的運營管理起到積極的作用。
門診量預測本質(zhì)上是一種時間序列的預測,而大多時間序列內(nèi)是存在不穩(wěn)定因素的,其中包括就近就醫(yī)、診療質(zhì)量、重點科室知名度、服務質(zhì)量、就醫(yī)環(huán)境等,這些因素都難以量化。以往研究者對門診量的預測研究只考慮針對一種或幾種因素,沒有對門診量時間序列數(shù)據(jù)進行挖掘,這與深度挖掘技術在醫(yī)療行業(yè)的研究應用較少有關。
本文詳細內(nèi)容請下載:http://m.ihrv.cn/resource/share/2000005381
作者信息:
樊沖
(錦州市大數(shù)據(jù)管理中心,遼寧錦州121000)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載。
