基于CNN-BiLSTM-Attetion的银杏液流预测模型及环境因子影响研究
电子技术应用
李波,武斌
浙江农林大学 数学与计算机科学学院
摘要: 树木液流受生理活动和多重环境因子的共同作用,表现为非线性和随机性特征,为预测模型的精确度带来挑战。对此,结合CNN卷积层、BiLSTM双向网络结构和注意力机制的优势分别对树干液流序列的局部特征、长期依赖和关键信息进行提取,并根据自测银杏液流数据集构建基于CNN-BiLSTM-Attetion的树干液流预测模型。该模型的R2、MSE和MAE分别为0.977 3、0.002 9和0.013 4,相较于CNN、BiLSTM、XGBoost、RNN和TCN建立的模型均有不同程度的提高。另外,还利用特征工程对环境因子的重要性进行排名,分析银杏树干液流在生长季初期对环境因子的响应规律,对银杏生长季初期的灌溉和养护提供理论依据。
中圖分類號(hào):TP391 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.245138
中文引用格式: 李波,武斌. 基于CNN-BiLSTM-Attetion的銀杏液流預(yù)測(cè)模型及環(huán)境因子影響研究[J]. 電子技術(shù)應(yīng)用,2024,50(9):101-105.
英文引用格式: Li Bo,Wu Bin. Research of ginkgo sap flow prediction model based on CNN-BiLSTM-Attetion and the impact of environmental factors[J]. Application of Electronic Technique,2024,50(9):101-105.
中文引用格式: 李波,武斌. 基于CNN-BiLSTM-Attetion的銀杏液流預(yù)測(cè)模型及環(huán)境因子影響研究[J]. 電子技術(shù)應(yīng)用,2024,50(9):101-105.
英文引用格式: Li Bo,Wu Bin. Research of ginkgo sap flow prediction model based on CNN-BiLSTM-Attetion and the impact of environmental factors[J]. Application of Electronic Technique,2024,50(9):101-105.
Research of ginkgo sap flow prediction model based on CNN-BiLSTM-Attetion and the impact of environmental factors
Li Bo,Wu Bin
College of Mathematics and Computer Science, Zhejiang Agriculture and Forestry University
Abstract: Sap flow is subject to the combined effects of physiological activities and multiple environmental factors, and exhibits nonlinear and stochastic characteristics, which poses a challenge to the accuracy of prediction models. In this regard, the advantages of CNN convolutional layer, BiLSTM bidirectional network structure and attention mechanism are combined to extract the local features, long-term dependence and key information of sap flow sequences, respectively, and the CNN-BiLSTM-Attetion sap flow prediction model is constructed according to the self-test ginkgo sap flow data set. The model has the R2, MSE, and MAE of 0.977 3, 0.002 9, and 0.013 4, respectively, which are all improved in varying degrees compared with the CNN, BiLSTM, XGBoost, RNN and TCN. In addition, feature engineering is also used to rank the importance of environmental factors and analyze the response regularity of ginkgo sap flow to environmental factors at the beginning of the growing season, which provides a theoretical basis for irrigation and maintenance of ginkgo at the beginning of the growing season.
Key words : sap flow prediction model;CNN-BiLSTM-Attetion;environmental factors;early growing season
引言
森林是地球生態(tài)系統(tǒng)不可或缺的一部分,由各種樹種組成的森林系統(tǒng)約占地球陸地總面積的1/3[1],樹木的蒸騰作用在環(huán)境變化中起著至關(guān)重要的作用。所以,準(zhǔn)確預(yù)測(cè)樹木蒸騰量對(duì)地球水文平衡和制定氣候變化下的可持續(xù)發(fā)展戰(zhàn)略具有重要意義[2-3]。樹干液流是樹木生長(zhǎng)和生理活動(dòng)的重要條件之一,反映了樹木的水分和養(yǎng)分運(yùn)輸狀況。通過監(jiān)測(cè)樹干液流的速率和方向[4],可以了解樹木的需水和耗水特性,進(jìn)而評(píng)估樹木的水分利用效率和養(yǎng)分供應(yīng)情況[5]。因此對(duì)樹干液流的準(zhǔn)確預(yù)測(cè)變得十分重要。
本文詳細(xì)內(nèi)容請(qǐng)下載:
http://m.ihrv.cn/resource/share/2000006150
作者信息:
李波,武斌
(浙江農(nóng)林大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,浙江 杭州 311300)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
