當(dāng)代電子系統(tǒng)中的電源管理可以通過高效的電源分配優(yōu)化系統(tǒng)效率。電流檢測是電源管理的關(guān)鍵技術(shù)之一,它不僅有助于保持理想的電壓等級,而且能通過提供伺服調(diào)整保持電子系統(tǒng)處于正常狀態(tài),同時(shí)還能防止發(fā)生電路故障和電池過度放電。
電流的檢測有兩種基本的方案。一種是測量電流流過的導(dǎo)體周圍的磁場,另一種是在電流路徑中插入一個(gè)小電阻,然后測量電阻上的壓降。第一種方法不會(huì)引起干擾或引入插損,但成本相對比較昂貴,而且容易產(chǎn)生非線性效應(yīng)和溫度系數(shù)誤差。因此磁場檢測方法通常局限于能夠承受與無插損相關(guān)的較高成本的應(yīng)用。
本文主要討論半導(dǎo)體行業(yè)中已經(jīng)得到應(yīng)用的電阻檢測技術(shù),它能為各種應(yīng)用提供精確且高性價(jià)比的直流電流測量結(jié)果。本文還介紹了高邊和低邊檢測原理,并通過實(shí)際例子幫助設(shè)計(jì)師選擇適合自己應(yīng)用的最佳方法。
電阻檢測
在電流路徑中以串聯(lián)的方式插入一個(gè)低阻值的檢測電阻會(huì)形成一個(gè)小的電壓降,該壓降可被放大從而被當(dāng)作一個(gè)正比于電流的信號。然而,根據(jù)具體應(yīng)用環(huán)境和檢測電阻的位置,這種技術(shù)將對檢測放大器造成不同的挑戰(zhàn)。
比如將檢測電阻放在負(fù)載和電路地之間,那么該電阻上形成的壓降可以用簡單的運(yùn)放進(jìn)行放大(見圖1B)。這種方法被稱為低邊電流檢測,與之相對應(yīng)的方法為高邊檢測,即檢測電阻放在電源和負(fù)載之間(見圖1A)。
![]() |
| 圖1:上面簡化的框圖描述了一種基本的高邊檢測電路(圖1A)和一種基本的低邊檢測電路(圖1B)。 |
檢測電阻值應(yīng)盡可能低,以保持功耗可控,但也要足夠大,以便產(chǎn)生能被檢測放大器檢測到并在目標(biāo)精度內(nèi)的電壓。值得注意的是,在檢測電阻上得到的這種差分檢測信號寄生在一個(gè)共模電壓上,這個(gè)共模電壓對低邊檢測方法來說接近地電平(0V),但對高邊檢測方法來說就接近電源電壓。這樣,測量放大器的輸入共模電壓范圍對低邊方案來說應(yīng)包含地,對高邊方案來說應(yīng)包含電源電壓。
由于低邊檢測時(shí)的共模電壓接近地電平,因此電流檢測電壓可以用一個(gè)低成本、低電壓的運(yùn)放進(jìn)行放大。低邊電流檢測簡單且成本低,但許多應(yīng)用不能容忍由于檢測電阻引入的地線干擾。較高的負(fù)載電流會(huì)使問題更加嚴(yán)重,因?yàn)橄到y(tǒng)中地電平被低邊電流檢測偏移的某個(gè)模塊可能需要與地電位沒變的其他模塊進(jìn)行通信。
為了更好地理解這個(gè)問題,可以看一下圖2中采用低邊電流檢測技術(shù)的“智能電池”充電器,其中AC/DC轉(zhuǎn)換器的輸出連接到了“2線”智能電池。
![]() |
|
圖2:采用低邊電流檢測技術(shù)的“智能電池”。 |
這種電池通常采用單線來傳遞指示電池狀態(tài)的電池細(xì)節(jié)信息,還有一根線用于溫度測量,出于安全的原因,這根線與負(fù)極和正極端子是隔離的。為了檢測電池溫度,電池通常內(nèi)置一個(gè)熱敏電阻,由該電阻提供正比于電池負(fù)極電壓的輸出信號。


