| 融合位置信息的卷积门控网络实现与应用 | |
| 所屬分類:技术论文 | |
| 上傳者:zhoubin333 | |
| 文檔大?。?span>1286 K | |
| 標(biāo)簽: 方面情感分析 位置信息 卷积神经网络 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:基于方面的情感分析(AspectBased Sentiment Analysis)通常使用长短期记忆网络和注意力机制方法,这两种模型结构复杂,运行时间长。现有的卷积神经网络结构简单,具有代表性的是GCAE(Gated Convolutional Networks with Aspect Embedding)模型。但其由于未充分地利用词语的顺序信息,不能准确快速地关注到关键词。因此提出了一种融合位置信息的卷积门控网络方法。采用SemEval数据集进行实验,并与采用GCAE模型的实验结果进行对比,结果表明,所提模型迭代一次约用时5.96 s,优于长短期记忆模型的81 s。该模型对句子中有多个方面的情感极性判断准确度为55.00%,高于GCAE模型的53.00%。该研究对于提高基于方面的情感分析的迭代时间和准确度有一定的参考意义。 | |
| 現(xiàn)在下載 | |
| VIP會(huì)員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號(hào)-2