| 基于K-Means算法的SSD-Mobilenet模型优化研究 | |
| 所屬分類:解决方案 | |
| 上傳者:zhoubin333 | |
| 文檔大?。?span>1178 K | |
| 標(biāo)簽: 目标检测 k-means SSD-Mobilenet模型 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:SSD-Mobilenet目标检测模型是将SSD和Mobilenet进行结合衍生出的一种轻量化模型,同时具备了两模型各自的优势,即多尺度检测和模型轻量化。在原模型中特征提取层使用了人为设置的先验框,这样的设置存在一定的主观性,并不适用于对特定场景下单一类别目标的识别与定位。为解决这一问题,本文提出了使用K-Means算法对目标真实框的宽高比进行聚类分析,提升模型在特定场景下对单一类别目标的检测能力,规避了人为设置的主观先验性。使用Pascal VOC 2007数据集对该模型进行训练和评估,实验结果显示,模型的mAP值比Fast RCNN提高了4.5%,比Faster RCNN提高了1.5%,比SSD-300提高了3.4%,比YOLOv2提高了2.4%。 | |
| 現(xiàn)在下載 | |
| VIP會員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號-2