| 基于LSTM的卷积神经网络异常流量检测方法 | |
| 所屬分類:技术论文 | |
| 上傳者:zhoubin333 | |
| 文檔大?。?span>465 K | |
| 標(biāo)簽: 异常流量检测 卷积神经网络 长短期记忆网络 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:针对传统机器学习方法依赖人工特征提取,存在检测算法准确率低、无法应对0day漏洞利用等未知类型攻击等问题,提出一种基于卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆网络(Long-Short Term Memory,LSTM)混合算法的异常流量检测方法,充分发掘攻击流量的结构化特点,提取流量数据的时空特征,提高了异常流量检测系统性能。实验结果表明,在CIC-IDS2017数据集上,多种异常流量检测的准确率均超过96.9%,总体准确率达到98.8%,与其他机器学习算法相比准确率更高,同时保持了极低的误警率。 | |
| 現(xiàn)在下載 | |
| VIP會(huì)員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號(hào)-2