| 基于1d-MSCNN+GRU的工业入侵检测方法研究 | |
| 所屬分類:技术论文 | |
| 上傳者:zhoubin333 | |
| 文檔大?。?span>613 K | |
| 標(biāo)簽: 一维多尺度卷积 门控循环单元 入侵检测 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:针对传统机器学习方法对特征依赖大,以及传统卷积神经网络只通过提取重要的局部特征来完成识别分类,收敛速度慢的问题,提出了一维多尺度卷积神经网络和门控循环单元相结合的入侵检测方法。该方法使用一维多尺度卷积神经网络加强对特征的捕捉能力,加快收敛速度,采用门控循环单元把握空间特征,减少通道数量扩张,降低数据维度。使用KDD CUP 99数据集和密西西比州大学的天然气管道的数据集进行仿真实验,结果表明与经典的机器学习分类器相比,该方法具有较高的入侵检测性能和较好的泛化能力。 | |
| 現(xiàn)在下載 | |
| VIP會(huì)員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號(hào)-2