| 狮群优化核极限学习机的分类算法 | |
| 所屬分類:技术论文 | |
| 上傳者:aetmagazine | |
| 文檔大?。?span>488 K | |
| 標簽: 核极限学习机 狮群算法 麻雀搜索算法 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:在核极限学习机(Kernel Based Extreme Learning Machine,KELM)分类应用的基础上,结合狮群算法(Loin Swarm Optimization,LSO)强全局寻优能力与收敛快的特性,提出一种LSO优化KELM算法。将测试准确率作为LSO优化KELM的适应度函数,根据移动位置获取最优适应度值进行数据分类测试的评价标准。采用UCI数据集仿真测试,实验结果表明,较KELM分类,LSO优化KELM可获得更优的分类准确率;较麻雀搜索算法(Sparrow Search Algorithm,SSA)优化KELM,LSO优化KELM收敛速度快,分类性能更优。 | |
| 現(xiàn)在下載 | |
| VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計算機系統(tǒng)工程研究所版權所有 京ICP備10017138號-2