| 基于空间深度置信网络的风速预测优化方法 | |
| 所屬分類(lèi):技术论文 | |
| 上傳者:aetmagazine | |
| 文檔大小:757 K | |
| 標(biāo)簽: 深度置信网络 风速预测 高斯过程回归 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:风能是目前应用最为广泛、技术最为成熟的可再生能源。为了保证风电场的稳定和安全运行,风速的准确预测至关重要。除传统的数值天气预报以外,机器学习技术已经广泛应用于不同时间尺度的风速预测。然而这些工作大多局限于单一地点的风速序列分析,没有考虑和利用风速的空间相关性。对此,使用深度置信网络(Deep Belief Network,DBN)对同一区域内多个地点的风速序列进行空间相关性特征识别。在训练过程中,深度置信网络充分挖掘了该区域内历史风速的联合分布,借此改善未来的风速预测。多组风速预测实验表明,空间深度置信网络能够有效降低风速的预测误差,经过空间深度置信网络重构后的风速预测误差平均降低了0.4 m/s。 | |
| 現(xiàn)在下載 | |
| VIP會(huì)員,AET專(zhuān)家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號(hào)-2