| 基于网络表示学习的区块链异常交易检测 | |
| 所屬分類:技术论文 | |
| 上傳者:zhoubin333 | |
| 文檔大?。?span>470 K | |
| 標(biāo)簽: 区块链 异常检测 网络表示学习 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:由于具有巨大的流通市值、庞大的用户量和账户匿名性的特点,区块链交易频繁受到盗窃、庞氏骗局、欺诈等异常行为的威胁。针对区块链异常交易,提出一种网络表示学习模型DeepWalk-Ba用于特征提取,以比特币为例,对区块链交易的网络结构和属性进行学习,从交易的邻域结构中挖掘隐含信息作为节点特征,再使用5种有监督和1种无监督的机器学习算法进行异常检测。实验表明,有监督模型随机森林表现最好,达到了99.3%的精确率和86.4%的召回率,比使用传统的特征提取方法的异常检测模型具有更好的检测效果。 | |
| 現(xiàn)在下載 | |
| VIP會員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號-2