基于分解策略的多标签在线特征选择算法
所屬分類:技术论文
上傳者:zhoubin333
文檔大?。?span>387 K
標(biāo)簽: 特征选择 在线学习 多标签分类
所需積分:0分積分不夠怎么辦?
文檔介紹:在线学习方法是用于大规模数据集的、高效且可扩展的机器学习算法。然而,在对多标签数据集进行特征选择时,传统的在线多标签学习方法需要访问数据集的所有特征,当数据集具有较高维度时,这种在线学习方式并不能适用于实际情景。针对多标签数据集的特征选择,在现有研究的基础上,使用二类分解策略,提出基于分解策略的多标签在线特征选择算法。该算法利用稀疏正则化和截取方法进行在线特征选择,降低计算复杂度。实验表明,算法的特征选择性能优于其他多标签在线特征选择算法。
現(xiàn)在下載
VIP會員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。