| 基于深度自适应小波网络的通信辐射源个体识别 | |
| 所屬分類:技术论文 | |
| 上傳者:zhoubin333 | |
| 文檔大?。?span>3404 K | |
| 標(biāo)簽: 辐射源个体识别 提升小波变换 深度自适应小波网络 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:针对现有的通信辐射源个体识别方法中人工提取特征复杂以及深度学习网络的识别机制缺乏清晰解释的问题,提出了一种基于深度自适应小波网络(Deep Adaptive Wavelet Network,DAWN)的通信辐射源个体识别方法。首先分析了选择互调干扰作为辐射源间个体特征的原因;接着应用了可实现提升小波变换的卷积神经网络结构去提取特征,并在其基础上设计出可以同时完成特征提取和识别的DAWN;最后,选择Oracle数据集验证方法的可行性。实验结果表明:利用DAWN对5个通信辐射源个体识别的准确率为95.5%,并且方法具有良好的抗噪性。 | |
| 現(xiàn)在下載 | |
| VIP會(huì)員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號(hào)-2