| 融合GhostNet的YOLOv5垃圾分类方法 | |
| 所屬分類:技术论文 | |
| 上傳者:wwei | |
| 文檔大?。?span>5286 K | |
| 標(biāo)簽: 垃圾分类 ECA GhostNet | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:垃圾分类是建设生态文明的重要一环,为解决重量级模型难以部署移动端设备的问题,提出基于YOLOv5网络改进的垃圾图像分类方法。采用融合GhostNet的主干网络,用线性运算代替传统卷积运算,降低了模型的参数量,提高了模型推理速度;通过在网络中加入改进版通道注意力模块,强化重要的通道特征,获取更多深层次的特征信息;采用加权边界融合方法,提升检测框的定位精度。经实验证明,该方法在自制数据集中较原模型的精度提高了8.5%,参数量减少了46.7%,平均推理速度提高了1.22 ms,实现了精度和推理速度的综合提升。 垃圾分类;ECA;GhostNet;YOLOv5 | |
| 現(xiàn)在下載 | |
| VIP會員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號-2