| 深度学习模型中不同激活函数的性能分析 | |
| 所屬分類:技术论文 | |
| 上傳者:wwei | |
| 文檔大?。?span>6176 K | |
| 標(biāo)簽: 卷积神经网络 激活函数 性能分析 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:近年来,人们为处理众多问题引入了各种类型的神经网络,神经网络取得了巨大的发展。任何神经网络使用的层次结构是线性和非线性函数的组合,其中最常见的非线性层是激活函数,如Logistic Sigmoid、Tanh、ReLU、ELU、Swish和Mish。对深度学习神经网络中的激活函数进行了介绍,并对不同激活函数的输出范围、单调性、平滑性等特点进行了分析。通过在数据集上测试,对现在使用频率较高的激活函数进行了性能测试。对激活函数的分析将有助于进一步地在模型设计中进行选择。 | |
| 現(xiàn)在下載 | |
| VIP會(huì)員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號(hào)-2