《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 测试测量 > 设计应用 > 基于JADE-EMD的滚动轴承故障检测
基于JADE-EMD的滚动轴承故障检测
2021年电子技术应用第6期
冯平兴1,张洪波2
1.成都工业学院 网络与通信工程学院,四川 成都611731;2.成都信息工程大学 通信工程学院,四川 成都610225
摘要: 轴承故障分析在滚动传动系统中一直是研究的热点,传统的轴承故障诊断方法往往建立在苛刻的约束条件之上,如检测信号为单一的故障信号成分、既定的混合系统保持不变或者模型建立在无噪声的环境等。针对这些局限,结合了独立成分分析(Independent Component Analysis,ICA)方法,提出了一种基于特征矩阵联合相似对角化及经验模态分解(Joint Approximative Diagonalization of Eigen matrix-Empirical Mode Decomposition,JADE-EMD)的多故障动态盲分析技术。该方法的基本思想是基于多输入多输出的动态混合模型,利用四阶统计量对随机噪声的盲辨识特性,将滚动轴承正常工作时的平稳随机噪声看成一类常规的信号输入。
中圖分類(lèi)號(hào): TN91
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.201019
中文引用格式: 馮平興,張洪波. 基于JADE-EMD的滾動(dòng)軸承故障檢測(cè)[J].電子技術(shù)應(yīng)用,2021,47(6):71-76.
英文引用格式: Feng Pingxing,Zhang Hongbo. Fault test of rolling bearing based on JADE-EMD[J]. Application of Electronic Technique,2021,47(6):71-76.
Fault test of rolling bearing based on JADE-EMD
Feng Pingxing1,Zhang Hongbo2
1.School of Network and Communication Engineering,Chengdu Technological University,Chengdu 611731,China; 2.School of Communication and Information Engineering,Chengdu University of Information Technology,Chengdu 610225,China
Abstract: Bearing fault analysis has been a research focus in rolling transmission system. However, the traditional bearing fault diagnosis technology is usually based on strict constraints, such as the detection signal is a single fault signal component, the established hybrid system remains unchanged, and the model is established in noise free situation. Aiming at the limitation of this problem, combined with the independent component analysis(ICA) method, this study proposes a multi fault dynamic blind analysis method based on joint approximate diagonalization of eigenmatrix empirical mode decision(JADE-EMD). The basic idea of this method is based on the dynamic transmission system with multi input and multi output. Because of the blind identification characteristics for random noise with fourth-order statistics, the stationary random noise of rolling bearing in normal operation works as a kind of conventional signal input. Then, the mixed signals received by the sensor are decomposed into independent components by dynamic blind source separation technology. Finally, the separated fault signals are decomposed by EMD, and the distribution results of several basic mode component functions(IMF) are obtained. Simulation results show that the method can effectively diagnose the rolling bearing with faults. Especially in the multi bearing drive system, it can effectively avoid the mutual interference between various fault signals. Compared with the traditional single direct detection method, it can further improve the accuracy of fault bearing analysis.
Key words : JADE-EMD;dynamic blind analysis;rolling bearing;fault diagnosis

0 引言

    滾動(dòng)軸承是轉(zhuǎn)動(dòng)傳輸系統(tǒng)中的關(guān)鍵機(jī)械零件之一,由于其表面光滑、滾道的尺寸精密,因而早期故障的振動(dòng)信號(hào)往往相對(duì)微弱[1-4],常常淹沒(méi)在軸與齒輪的振動(dòng)信號(hào)中,而軸承的工作狀態(tài)直接關(guān)系到整個(gè)機(jī)械傳輸系統(tǒng)的正常運(yùn)行。為了保障機(jī)械系統(tǒng)的正常且安全可靠的運(yùn)行,避免因軸承故障而對(duì)系統(tǒng)引起的次生損害[5-9],需要一種能動(dòng)態(tài)監(jiān)測(cè)并能有效的診斷滾動(dòng)軸承的工作狀況。本文的研究提出利用獨(dú)立成分分析(Independent Component Analysis,ICA)和經(jīng)驗(yàn)?zāi)B(tài)分解(Empirical Mode Decomposition,EMD)技術(shù)對(duì)軸承故障信號(hào)進(jìn)行聯(lián)合分析[10],通過(guò)利用這兩種信號(hào)處理技術(shù)的優(yōu)點(diǎn)實(shí)現(xiàn)了對(duì)軸承故障信號(hào)的檢測(cè)。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://m.ihrv.cn/resource/share/2000003577




作者信息:

馮平興1,張洪波2

(1.成都工業(yè)學(xué)院 網(wǎng)絡(luò)與通信工程學(xué)院,四川 成都611731;2.成都信息工程大學(xué) 通信工程學(xué)院,四川 成都610225)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。