基于ReliefF-DDC特征选择算法的非侵入式负荷识别研究
2021年电子技术应用第7期
邵 琪1,包永强2,姜家辉1,张旭旭1
1.南京工程学院 电力工程学院,江苏 南京211167;2.南京工程学院 信息与通信工程学院,江苏 南京211167
摘要: 提取有效的负荷运行数据特征对于提高非侵入式负荷识别的精度具有重要作用。针对数据特征选择欠佳导致负荷识别准确率不高的问题,提出了一种基于ReliefF-DDC特征选择算法,用于降低特征维数减少复杂度,改善负荷识别效果。首先,利用ReliefF算法分析各特征与类别的关系计算特征权重,筛选无关特征;其次,利用DDC算法计算特征之间与类别的互信息分析相关性,根据特征子集评价度量删除冗余特征;最后,采用孪生支持向量机(TWSVM)作分类器进行负荷识别。实验表明,所提出的算法在提升分类效果的同时减少了运行时间。
中圖分類號: TN911;TM714
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200524
中文引用格式: 邵琪,包永強,姜家輝,等. 基于ReliefF-DDC特征選擇算法的非侵入式負荷識別研究[J].電子技術應用,2021,47(7):74-77,82.
英文引用格式: Shao Qi,Bao Yongqiang,Jiang Jiahui,et al. Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm[J]. Application of Electronic Technique,2021,47(7):74-77,82.
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200524
中文引用格式: 邵琪,包永強,姜家輝,等. 基于ReliefF-DDC特征選擇算法的非侵入式負荷識別研究[J].電子技術應用,2021,47(7):74-77,82.
英文引用格式: Shao Qi,Bao Yongqiang,Jiang Jiahui,et al. Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm[J]. Application of Electronic Technique,2021,47(7):74-77,82.
Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm
Shao Qi1,Bao Yongqiang2,Jiang Jiahui1,Zhang Xuxu1
1.School of Electrical Engineering,Nanjing Institute of Technology,Nanjing 211167,China; 2.School of Information and Communication Engineering,Nanjing Institute of Technology,Nanjing 211167,China
Abstract: Extracting effective characteristics of load operation data plays an important role in improving the accuracy of non-intrusive load identification.In this paper, a ReliefF-DDC feature selection algorithm was proposed to reduce feature dimension, reduce complexity and improve load recognition.Firstly, ReliefF algorithm was used to analyze the relationship between each feature and category, calculate feature weight, and screen irrelevant features.Secondly, DDC algorithm is used to calculate the mutual information analysis correlation between features and categories, and redundant features are removed according to feature subset evaluation measurement. Finally, twin support vector machine(TWSVM) is used as classifier for load recognition. Experiments show that the algorithm proposed in this paper improves the classification effect and reduces the running time.
Key words : ReliefF;DDC;TWSVM; feature selection; load identification
0 引言
非侵入式負荷監(jiān)測法(Non-Intrusive Load Monitoring,NILM)為實現智能電網和用戶之間的互動提供了數據支持,該方法在接戶線入口處安裝傳感器,采集總負荷的電壓、電流等電氣量數據進行分析,細化系統(tǒng)數據,從而辨識家用電器的類別及運行狀態(tài)[1]。相比于侵入式負荷監(jiān)測法(Intrusive Load Monitoring,ILM),NILM具有成本低、用戶接受度高、后期維護方便等優(yōu)勢,但是該方法對于負荷分解算法的要求較高。特征提取和負荷識別作為NILM中兩大關鍵技術[2],為NILM的發(fā)展提供了強有力的技術支持。特征選擇作為處理已提取特征的重要手段,是目前研究的熱點之一。
本文詳細內容請下載:http://m.ihrv.cn/resource/share/2000003659。
作者信息:
邵 琪1,包永強2,姜家輝1,張旭旭1
(1.南京工程學院 電力工程學院,江蘇 南京211167;2.南京工程學院 信息與通信工程學院,江蘇 南京211167)

此內容為AET網站原創(chuàng),未經授權禁止轉載。
