《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信与网络 > 设计应用 > 一种基于深度强化学习的任务卸载方法
一种基于深度强化学习的任务卸载方法
2022年电子技术应用第8期
高宇豆1,2,黄祖源1,王海燕1,保 富1,张 航1,李 辉1
1.云南电网有限责任公司 信息中心,云南 昆明650214;2.西南林业大学 大数据与智能工程学院,云南 昆明650224
摘要: 随着车联网的快速发展,车载应用大多是计算密集和延迟敏感的。车辆是资源受限的设备,无法为这些应用提供所需的计算和存储资源。边缘计算通过将计算和存储资源提供给网络边缘的车辆,有望成为满足低延迟需求的有效解决方案。这种将任务卸载到边缘服务器的计算模式不仅可以克服车辆资源的不足,还可以避免将任务卸载到云可能导致的高延迟。提出了一种基于深度强化学习的任务卸载方法,以最小化任务的平均完成时间。首先,把多任务卸载决策问题规约为优化问题。其次,使用深度强化学习对优化问题进行求解,以获得具有最小完成时间的优化卸载策略。最后,实验结果表明,该方法的性能优于其他基准方法。
中圖分類號(hào): TP311
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.212133
中文引用格式: 高宇豆,黃祖源,王海燕,等. 一種基于深度強(qiáng)化學(xué)習(xí)的任務(wù)卸載方法[J].電子技術(shù)應(yīng)用,2022,48(8):29-33.
英文引用格式: Gao Yudou,Huang Zuyuan,Wang Haiyan,et al. Task offloading based on deep reinforcement learning for Internet of Vehicles[J]. Application of Electronic Technique,2022,48(8):29-33.
Task offloading based on deep reinforcement learning for Internet of Vehicles
Gao Yudou1,2,Huang Zuyuan1,Wang Haiyan1,Bao Fu1,Zhang Hang1,Li Hui1
1.Center of Information,Yunnan Power Grid Co.,Ltd.,Kunming 650214,China; 2.School of Big Data and Intelligent Engineering,Southwest Forestry University,Kunming 650224,China
Abstract: With the rapid development of Internet of Vehicular, more and more vehicles′ applications are computation-intensive and delay-sensitive. Resource-constrained vehicles cannot provide the required amount of computation and storage resources for these applications. Edge computing(EC) is expected to be a promising solution to meet the demand of low latency by providing computation and storage resources to vehicles at the network edge. This computing paradigm of offloading tasks to the edge servers can not only overcome the restrictions of limited capacity on vehicles,but also avoid the high latency caused by offloading tasks to the remote cloud. In this paper, an efficient task offloading algorithm based on deep reinforcement learning is proposed to minimize the average completion time of applications. Firstly, the multi-task offloading strategy problem is formalized as an optimization problem. Secondly, a deep reinforcement learning is leveraged to obtain an optimized offloading strategies with the lowest completion time. Finally, the experimental results show that the performance of the proposed algorithm is better than other baselines.
Key words : task offloading;Internet of Vehicles;edge computing;deep learning;reinforcement learning

0 引言

    車聯(lián)網(wǎng)(Internet of Vehicle,IoV)是車載網(wǎng)(Vehicular Ad hoc Network,VANET)和物聯(lián)網(wǎng)(Internet of Things,IoT)的深度融合,旨在提高車輛網(wǎng)絡(luò)的性能,降低交通擁堵的風(fēng)險(xiǎn)[1]。在車聯(lián)網(wǎng)中,許多車輛應(yīng)用不僅需要大量的計(jì)算資源,還對(duì)響應(yīng)時(shí)間有嚴(yán)格的要求[2]。但是,車輛是計(jì)算資源和通信能力有限的裝置。對(duì)于這些計(jì)算密集、延遲敏感的應(yīng)用,車輛無法提供足夠的計(jì)算和存儲(chǔ)資源[3]

    為應(yīng)對(duì)車載應(yīng)用所需的大量計(jì)算資源,云計(jì)算被視為一種可行的解決方案。在云計(jì)算環(huán)境下,車輛可以通過無線網(wǎng)絡(luò)將計(jì)算密集型應(yīng)用卸載到云上運(yùn)行。這種端-云協(xié)作的計(jì)算模式很好地?cái)U(kuò)展了車輛的計(jì)算能力[4]

    然而,對(duì)于計(jì)算密集、延遲敏感的應(yīng)用,端-云協(xié)作的計(jì)算模式是不夠的。因?yàn)?,遠(yuǎn)程任務(wù)卸載帶來的高傳輸延遲會(huì)降低用戶體驗(yàn)[3]。為解決此問題,將車聯(lián)網(wǎng)和邊緣計(jì)算相結(jié)合的車輛邊緣計(jì)算,被認(rèn)為是滿足低延遲的更好解決方案[5]。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://m.ihrv.cn/resource/share/2000004645。




作者信息:

高宇豆1,2,黃祖源1,王海燕1,保  富1,張  航1,李  輝1

(1.云南電網(wǎng)有限責(zé)任公司 信息中心,云南 昆明650214;2.西南林業(yè)大學(xué) 大數(shù)據(jù)與智能工程學(xué)院,云南 昆明650224)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容