《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 测试测量 > 设计应用 > 面向多维数据的异常点检测模型设计*
面向多维数据的异常点检测模型设计*
网络安全与数据治理 7期
马勇,杨敏,朱琳
(1.内蒙古科技大学包头医学院网络信息中心,内蒙古包头014040; 2.内蒙古科技大学包头医学院教务处,内蒙古包头014040)
摘要: 为了在大数据环境下快速、精准地挖掘异常点,保障网络安全,提出了一种面向多维数据的异常点检测模型设计方案。该方案利用长短期记忆网络(LSTM)存储任意时间段的多维数据,并使用图卷积网络提取完整数据结构,同时加入惩罚参数和均方误差来缩小异常点出现范围。此外,还利用编码器和解码器构建变分自编码器函数模型,使其能够解读正常数据子特征,并通过编码重建损失函数来计算数据异常度量,从而实现异常点检测。经过实验验证,该方法表现出较高的检测正确率和运行效率,具有极高的应用价值。
中圖分類號:TP995
文獻(xiàn)標(biāo)識碼:A
DOI:10.19358/j.issn.2097-1788.2023.07.014
引用格式:馬勇,楊敏,朱琳.面向多維數(shù)據(jù)的異常點檢測模型設(shè)計[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(7):85-90.
Design of outlier detection model for multidimensional data
Ma Yong,Yang Min,Zhu Lin
1Network Information Center Inner Mongolia University of Science and Technology Baotou Medical College, Baotou 014040, China; 2Dean′s Office Inner Mongolia University of Science and Technology Baotou Medical College, Baotou 014040,China)
Abstract: In order to quickly and accurately mine outliers in the big data environment and ensure network security, we propose a design scheme for multidimensional data oriented outlier detection model. In this scheme, the long short memory network (LSTM) is used to store multidimensional data in any period of time, and the graph convolution network is used to extract the complete data structure. At the same time, penalty parameters and mean square error are added to narrow the range of outliers. In addition, we also use the encoder and decoder to build a variational self encoder function model, so that it can interpret the normal data sub features, and calculate the data anomaly measurement through the coding reconstruction loss function, so as to achieve outlier detection. After experimental verification, this method exhibits high detection accuracy and operational efficiency, and has high application value.
Key words : coding loss function; variational self encoder; abnormal point detection; long and short term memory network; multidimensional data

0    引言

針對目前異常數(shù)據(jù)檢測方法占用空間內(nèi)存大,且異常點漏檢率與誤檢率高問題[1],建立一種面向多維數(shù)據(jù)異常點挖掘方法是很有必要的,建立的方法必須要保證在實際數(shù)據(jù)異常點檢測過程中,既能夠快速響應(yīng),又能縮小異常檢測范圍、降低異常檢測錯誤率,這是一個很具有挑戰(zhàn)性的問題。




本文詳細(xì)內(nèi)容請下載:http://m.ihrv.cn/resource/share/2000005426




作者信息:

馬勇,楊敏,朱琳

(1.內(nèi)蒙古科技大學(xué)包頭醫(yī)學(xué)院網(wǎng)絡(luò)信息中心,內(nèi)蒙古包頭014040;2.內(nèi)蒙古科技大學(xué)包頭醫(yī)學(xué)院教務(wù)處,內(nèi)蒙古包頭014040)

微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容