《電子技術應用》
您所在的位置:首頁 > 测试测量 > 设计应用 > 基于ARM的呼吸暂停综合征检测系统*
基于ARM的呼吸暂停综合征检测系统*
电子技术应用
甘智高,岳克强,李文钧,潘成铭
(杭州电子科技大学 电子信息学院,浙江 杭州 310018)
摘要: 阻塞型睡眠呼吸暂停综合征(Obstructive Sleep Apnea Hypopnea Syndrome, OSAHS)是一种常见的呼吸睡眠疾病,它会降低人们的睡眠质量,使人们产生疲惫感,更严重地会危害人们的身心健康。研究设计了一种基于ARM的OSAHS检测系统,系统以i.MX6ULL作为硬件主控,采用嵌入式Linux系统为软件平台,具有鼾声采集处理、检测分类、传输等功能,与云平台建立完整的OSAHS检测系统,并且通过与标准多导睡眠监测仪(PSG)设备对比检测效果达到83.9%,达到初筛的作用,具有较强的辅助诊断应用价值。
中圖分類號:TN911.72 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.223563
中文引用格式: 甘智高,岳克強,李文鈞,等. 基于ARM的呼吸暫停綜合征檢測系統(tǒng)[J]. 電子技術應用,2023,49(10):124-129.
英文引用格式: Gan Zhigao,Yue Keqiang,Li Wenjun,et al. OSAHS detection system based on ARM platform[J]. Application of Electronic Technique,2023,49(10):124-129.
OSAHS detection system based on ARM platform
Gan Zhigao,Yue Keqiang,Li Wenjun,Pan Chengming
(School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China)
Abstract: Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a common respiratory sleep disease. It decreases the quality of people's sleep and causes fatigue, and more seriously, it harms people's physical and mental health. The study designed an ARM-based OSAHS detection system. The system uses i.MX6ULL as the hardware master control and the embedded Linux system as the software platform. It has functions such as snore collection and processing, detection and classification, transmission, etc. The system has established a complete OSAHS detection system with the cloud platform. By comparing with the standard polysomnography (PSG) device, the detection effect reaches 83.9%. It achieves the role of primary screening and has strong auxiliary diagnostic application value.
Key words : ARM;Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS);detection system;polysomnography (PSG)

0 引言

OSAHS臨床表現(xiàn)為患者在睡眠時打鼾并且伴隨著連續(xù)出現(xiàn)長時間的呼吸暫停事件,以及出現(xiàn)白天嗜睡疲乏癥狀。研究指出由于呼吸暫停而導致的反復呼吸不暢、氧氣不足,可導致多種疾病的發(fā)生,最嚴重會夜間猝死[1]。目前多導睡眠儀(Polysomnograph,PSG)是評估OSAHS嚴重程度的最常見方法,也是金標準[2],但是PSG儀器價格高昂,患者只有在意識到問題后才會去醫(yī)院等專業(yè)機構就診,這往往會導致OSAHS發(fā)現(xiàn)時機的延誤。

鼾聲與語音有很相似之處,可以使用語音信號的特征作為鼾聲分析的特征,常見的端點檢測主要有基于時頻特征的方法[3]以及基于機器學習[4]、神經(jīng)網(wǎng)絡[5]的方法。時頻域的算法一般較簡單易實現(xiàn),但抗噪干擾是個問題,丁荔等[6]提出OM-LSA和維納濾波結合的睡眠鼾聲降噪的方法,實現(xiàn)低信噪比環(huán)境下算法的高準確率;而機器學習、神經(jīng)網(wǎng)絡的方法操作復雜,計算量大。在區(qū)別是否患有OSAHS的早期研究中,偏向于鼾聲的聲音強度的研究,用在一段時間內鼾聲信號的聲級LAeq來區(qū)別OSAHS患者和單純打鼾人[7]。Azadeh Yadollahi通過共振峰和短時平均過零率,實現(xiàn)鼾聲和呼吸聲二分類達到90%的準確率[8]。彭好等發(fā)現(xiàn)OSAHS患者的共振峰頻率其F1值的大小與OSAHS的嚴重程度呈現(xiàn)出相關性[9]。還有研究用鼾聲基頻作為區(qū)分特征[10],以及用K均值對鼾聲片段按照時間間隔的二分類,以此為基礎實現(xiàn)OSAHS的自動診斷[11]。

目前重要的是要發(fā)現(xiàn)在出現(xiàn)OSAHS癥狀臨床早期進行準備和治療,尤其是如何盡快發(fā)現(xiàn),當前的部分研究算法在應用上還有一定距離,如何能將算法部署成功應用是一個關鍵[12]。本文研究設計的一種OSAHS檢測系統(tǒng),起到了一個幫助用戶自查初篩的作用,及時提醒用戶,能夠大大降低病情加重風險。



本文詳細內容請下載:http://m.ihrv.cn/resource/share/2000005725




作者信息:

甘智高,岳克強,李文鈞,潘成銘

(杭州電子科技大學 電子信息學院,浙江 杭州 310018)


微信圖片_20210517164139.jpg

此內容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉載。