基于遗传算法和LightGBM的网络安全态势感知模型
网络安全与数据治理
胡锐,徐芳,熊郁峰,熊洲宇,陈敏
江西省烟草公司吉安市公司
摘要: 针对传统烟草工业系统中的网络流量异常检测方法存在的特征间联系和上下文信息丢失等问题,提出了一种基于遗传算法改进的LightGBM模型,此模型能够使得模型避免陷入局部最优情况。首先通过计算构建树模型对数据降维,从高维数据中挖掘出对于检测效果影响重要的关键特征信息,并使用提出的模型对这些关键特征信息进行分析。为了评估模型的有效性与优越性,使用准确率和损失进行模型评价,并与其他网络流量异常检测模型Tabular model、TabNet、LightGBM、XGBoost进行对比。使用公开数据集 CIC.IDS.2018 进行实验分析。结果表明,在高特征的网络安全态势感知下,多分类和二分类的识别准确率分别达99.43%和99.87%,在低特征情况下,多分类和二分类的识别准确率分别达98.73%和99.39%,具有较高准确率以及良好的灵活性和鲁棒性。
中圖分類號(hào):TP393.0文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19358/j.issn.2097-1788.2024.03.003
引用格式:胡銳,徐芳,熊郁峰,等.基于遺傳算法和LightGBM的網(wǎng)絡(luò)安全態(tài)勢(shì)感知模型[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2024,43(3):14-20.
引用格式:胡銳,徐芳,熊郁峰,等.基于遺傳算法和LightGBM的網(wǎng)絡(luò)安全態(tài)勢(shì)感知模型[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2024,43(3):14-20.
Network traffic anomaly identification and detection based on genetic algorithm and LightGBM
Hu Rui,Xu Fang,Xiong Yufeng,Xiong Zhouyu,Chen Min
Jiangxi Tobacco Company Ji′an City Company
Abstract: This study proposes an improved LightGBM model based on genetic algorithm to avoid problems such as the connection between features and the loss of contextual information in the network traffic anomaly detection method in traditional tobacco industry systems. This model can avoid the model falling into local optimal situations. First, the data dimensionality is reduced by calculating and constructing a tree model, and key feature information that is important to the detection effect is mined from high dimensional data, and the proposed model is used to analyze this key feature information. To evaluate the effectiveness and superiority of the model, this paper uses accuracy and loss to evaluate the model and compares it with other network traffic anomaly detection models Tabular model, TabNet, LightGBM, and XGBoost. Experimental analysis was conducted using the public data set CIC.IDS.2018. The results show that under high-feature network security situational awareness, the recognition accuracy of multi class and two-class classification reaches 99.43% and 99.87% respectively. In the case of low features, the multi-class recognition accuracy is 99.43%. The recognition accuracy of classification and binary classification reaches 98.73% and 99.39% respectively, which has high accuracy and good flexibility and robustness.
Key words : anomaly detection; machine learning; genetic algorithm; LightGBM
引言
網(wǎng)絡(luò)給諸多行業(yè)發(fā)展帶來(lái)了便利,但因網(wǎng)絡(luò)而導(dǎo)致的問(wèn)題也日漸顯著,相繼出現(xiàn)了因網(wǎng)絡(luò)信息保護(hù)不利而導(dǎo)致的信息泄露、網(wǎng)絡(luò)詐騙、網(wǎng)絡(luò)監(jiān)聽等事件[1]。人工智能技術(shù)是網(wǎng)絡(luò)安全技術(shù)難題的重要解決手段,越來(lái)越多的研究著重于基于人工智能構(gòu)建網(wǎng)絡(luò)態(tài)勢(shì)感知模型[2]。應(yīng)對(duì)網(wǎng)絡(luò)攻擊的研究成為熱門[3-4],研究人員逐漸使用網(wǎng)絡(luò)安全態(tài)勢(shì)感知代替原有的被動(dòng)防御措施,能夠提前預(yù)測(cè)和發(fā)現(xiàn)潛藏的網(wǎng)絡(luò)攻擊。原始的網(wǎng)絡(luò)異常流量檢測(cè)模型中通常使用統(tǒng)計(jì)分析[5]等方法,由于是通過(guò)已有信息來(lái)進(jìn)行防范,往往因?yàn)轭A(yù)測(cè)效果差而達(dá)不到防范新型網(wǎng)絡(luò)攻擊的效果。
本文詳細(xì)內(nèi)容請(qǐng)下載:
http://m.ihrv.cn/resource/share/2000005929
作者信息:
胡銳,徐芳,熊郁峰,熊洲宇,陳敏
江西省煙草公司吉安市公司,江西吉安343009

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
