《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 人工智能 > 设计应用 > 简化退化模型的真实图像超分辨率网络
简化退化模型的真实图像超分辨率网络
网络安全与数据治理
林旭锋,吴丽君
福州大学物理与信息工程学院
摘要: 图像超分辨率任务常用双三次下采样以构造数据集训练网络,但双三次下采样由于退化模型固定,导致网络泛化能力低,无法用于真实世界低分辨率图像。为解决上述问题本文提出预处理模块,通过预处理模块与双三次下采样数据集得到的网络相结合,在减少资源消耗的同时提高其泛化能力。此外,还针对不同的精度需求设计了特征学习训练策略和多任务联调策略。通过根据不同需求采用相应的训练策略,在满足精度需求的同时具有消耗计算资源少、训练速度快以及适用范围广的特点。实验证明,增加预处理模块的网络以较少的模型参数增加量换取了重建效果和感知质量方面的较大提升,并且通过不同策略实现了进一步的精度提高。
中圖分類號(hào):TP391文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19358/j.issn.2097-1788.2024.03.006
引用格式:林旭鋒,吳麗君.簡化退化模型的真實(shí)圖像超分辨率網(wǎng)絡(luò)[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2024,43(3):34-39.
Real image super resolution network for simplifying the degradation model
Lin Xufeng,Wu Lijun
College of Physics and Information Engineering, Fuzhou University
Abstract: In the task of image super resolution, bicubic down sampling is commonly used to construct datasets for training networks. However, due to the fixed degradation model, bicubic down sampling results in low generalization ability of the network and cannot be used for real world low resolution images. To address this problem, this paper proposes a preprocessing module that combines with the network obtained from the bicubic down sampling dataset to improve its generalization ability while reducing resource consumption. In addition, this paper also designs feature learning training strategies and multi task joint training strategies for different accuracy requirements. By adopting corresponding training strategies according to different requirements, it can meet the accuracy requirements while having the characteristics of low computational resource consumption, fast training speed, and wide applicability. Experiments have shown that adding a network with a preprocessing module can achieve greater improvements in reconstruction effect and perceptual quality with less model parameter increase, and further improve accuracy through different strategies.
Key words : super resolution; preprocessing module; multi task learning; computer vision

引言

單圖像超分辨率(Single Image Super Resolution,SISR)旨在從低分辨率(Low Resolution,LR)圖像恢復(fù)高分辨率 (High Resolution,HR)圖像。在訓(xùn)練SISR的網(wǎng)絡(luò)時(shí),人們常使用二三次下采樣生成超分辨率數(shù)據(jù)集從而使網(wǎng)絡(luò)學(xué)習(xí)到相應(yīng)的退化模型,進(jìn)而恢復(fù)圖像高頻分量。但實(shí)際低質(zhì)量圖像的形成有兩大主因:成像設(shè)備性能以及環(huán)境因素干擾,這與二三次下采樣生成的低質(zhì)量圖像在退化模型上會(huì)有較大出入。學(xué)者通過構(gòu)造數(shù)據(jù)集,將真實(shí)的LR HR數(shù)據(jù)集應(yīng)用于超分辨率網(wǎng)絡(luò)的訓(xùn)練,使超分網(wǎng)絡(luò)能更好地應(yīng)用于真實(shí)的低分辨率圖像。例如利用不同的拍攝器材或調(diào)整參數(shù)構(gòu)造LR HR數(shù)據(jù)集[1-5]以及利用生成對抗模型生成更接近于真實(shí)場景的LR HR數(shù)據(jù)集[6]。如圖1所示,與利用二三次下采樣得到的數(shù)據(jù)集不同,真實(shí)世界低分辨率數(shù)據(jù)集的退化模型復(fù)雜度較高,并且不同的設(shè)備型號(hào)以及不同的參數(shù)設(shè)置均會(huì)導(dǎo)致退化模型發(fā)生變化。而利用二三次下采樣得到的數(shù)據(jù)集則具有較為固定的退化模型,僅在圖像的高頻分量產(chǎn)生退化,而低頻分量則與原圖近似。


本文詳細(xì)內(nèi)容請下載:

http://m.ihrv.cn/resource/share/2000005932


作者信息:

林旭鋒,吳麗君

福州大學(xué)物理與信息工程學(xué)院,福建福州350108


雜志訂閱.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。