《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 人工智能 > 设计应用 > 基于伪触发词的并行预测篇章级事件抽取方法
基于伪触发词的并行预测篇章级事件抽取方法
电子技术应用
秦海涛1,2,线岩团1,2,相艳1,2,黄于欣1,2
1.昆明理工大学 信息工程与自动化学院; 2.昆明理工大学 云南省人工智能重点实验室
摘要: 篇章级事件抽取一般将事件抽取任务分为候选实体识别、事件检测和论元识别3个子任务,然后采用级联的方式依次进行,这样的方式会造成误差传递;另外,现有的大多数模型在解码事件时,对事件数量的预测隐含在解码过程中,且只能按照预定义的事件顺序及预定义的角色顺序预测事件论元,使得先抽取的事件并没有考虑到后面抽取的事件。针对以上问题提出一种多任务联合的并行预测事件抽取框架。首先,使用预训练语言模型作为文档句子的编码器,检测文档中存在的事件类型,并使用结构化自注意力机制获取伪触发词特征,预测每种事件类型的事件数量;然后将伪触发词特征与候选论元特征进行交互,并行预测每个事件对应的事件论元,在大幅缩减模型训练时间的同时获得与基线模型相比更好的性能。最终事件抽取结果F1值为78%,事件类型检测子任务F1值为98.7%,事件数量预测子任务F1值为90.1%,实体识别子任务F1值为90.3%。
中圖分類(lèi)號(hào):TP391 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.244868
中文引用格式: 秦海濤,線巖團(tuán),相艷,等. 基于偽觸發(fā)詞的并行預(yù)測(cè)篇章級(jí)事件抽取方法[J]. 電子技術(shù)應(yīng)用,2024,50(4):67-74.
英文引用格式: Qin Haitao,Xian Yantuan,Xiang Yan,et al. Parallel prediction of document-level event extraction method via pseudo trigger words[J]. Application of Electronic Technique,2024,50(4):67-74.
Parallel prediction of document-level event extraction method via pseudo trigger words
Qin Haitao1,2,Xian Yantuan1,2,Xiang Yan1,2,Huang Yuxin1,2
1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology;2.Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology
Abstract: Document-level event extraction generally divides the task into three subtasks: candidate entity recognition, event detection, and argument recognition. The conventional approach involves sequentially performing these subtasks in a cascading manner, leading to error propagation. Additionally, most existing models implicitly predict the number of events during the decoding process and predict event arguments based on a predefined event and role order, so that the former extraction will not consider the latter extraction results. To address these issues, a multi-task joint and parallel event extraction framework is proposed in this paper. Firstly, a pre-trained language model is used as the encoder for document sentences. On this basis, the framework detects the types of events present in the document. It utilizes a structured self-attention mechanism to obtain pseudo-trigger word features and predicts the number of events for each event type. Subsequently, the pseudo-trigger word features are interacted with candidate argument features, and parallel prediction is performed to obtain various event arguments for each event, significantly reducing model training time while achieving performance comparable to the baseline model. The final F1 score for event extraction is 78%, with an F1 score of 98.7% for the event type detection subtask, 90.1% for the event quantity prediction subtask, and 90.3% for the entity recognition subtask.
Key words : document-level event extraction;multi-task joint;pre-trained language model;structured self-attention mechanism;parallel prediction

引言

近年來(lái)互聯(lián)網(wǎng)發(fā)展迅速,網(wǎng)絡(luò)媒體每天產(chǎn)生大量信息,事件抽取任務(wù)作為信息抽取的分支,能從這些非結(jié)構(gòu)化文本信息中抽取結(jié)構(gòu)化信息[1],幫助人們快速有效地做出分析和決策,是自然語(yǔ)言處理領(lǐng)域中一項(xiàng)重要的研究任務(wù),在智能問(wèn)答、信息檢索、自動(dòng)摘要、推薦等領(lǐng)域有著廣泛的應(yīng)用。

事件抽取從文本粒度上可以分為句子級(jí)的事件抽取[2-6]和篇章級(jí)的事件抽取[7-18],句子級(jí)事件抽取通常先識(shí)別句子中的觸發(fā)詞[1-2]來(lái)檢測(cè)事件類(lèi)型,然后再抽相應(yīng)的事件論元(元素),而Li等[4]和Nguyen等[5]則采用聯(lián)合模型捕獲實(shí)體與事件之間的語(yǔ)義關(guān)系,同時(shí)識(shí)別事件和實(shí)體,提高了事件抽取的準(zhǔn)確率。但是隨著文本信息的增加,一些基于觸發(fā)詞的句子級(jí)事件抽取不再適用,以及由于文檔信息在日常生活中更普遍的適用性,篇章級(jí)的事件抽取受到了更廣泛的關(guān)注。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://m.ihrv.cn/resource/share/2000005951


作者信息:

秦海濤1,2,線巖團(tuán)1,2,相艷1,2,黃于欣1,2

(1.昆明理工大學(xué) 信息工程與自動(dòng)化學(xué)院,云南 昆明 650500;

2.昆明理工大學(xué) 云南省人工智能重點(diǎn)實(shí)驗(yàn)室,云南 昆明 650500)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容