《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 嵌入式技术 > 设计应用 > 一种基于知识蒸馏的量化卷积神经网络FPGA部署
一种基于知识蒸馏的量化卷积神经网络FPGA部署
电子技术应用
罗德宇,郭千禧,张怀诚,黄启俊,王豪
武汉大学 物理科学与技术学院
摘要: 设计了一种针对心电数据实时分类的量化神经网络,将权重量化为两位整数,运用知识蒸馏的方法使性能达到了期望的效果,并部署于FPGA开发板上。知识蒸馏后的量化网络比全精度网络的分类准确率提升了9%。在FPGA开发板上的运行结果符合预期,达到了需要的性能,可以对左束支传导阻滞(L)、右束支传导阻滞(R)、正常心拍(N)和室性早搏综合征(V)四种心电信号进行分类,相比于其他量化方式对存储参数的需求更小,资源使用更少,相比于CPU速度提升了1.5倍,运行时间达到实时性要求,适合于部署在小型、轻量化的资源有限的可穿戴设备上。
中圖分類號(hào):TN911.72 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.234479
中文引用格式: 羅德宇,郭千禧,張懷誠(chéng),等. 一種基于知識(shí)蒸餾的量化卷積神經(jīng)網(wǎng)絡(luò)FPGA部署[J]. 電子技術(shù)應(yīng)用,2024,50(4):97-101.
英文引用格式: Luo Deyu,Guo Qianxi,Zhang Huaicheng,et al. An FPGA implement of ECG classifier using quantized CNN based on knowledge distillation[J]. Application of Electronic Technique,2024,50(4):97-101.
An FPGA implement of ECG classifier using quantized CNN based on knowledge distillation
Luo Deyu,Guo Qianxi,Zhang Huaicheng,Huang Qijun,Wang Hao
School of Physics and Technology, Wuhan University
Abstract: In this paper, we designed a quantized convolutional neural network for real-time classification of ECG data, quantized the weights to INT2, applied knowledge distillation to achieve the desired classification results, and deployed it on FPGA. The quantized network after knowledge distillation improved the classification accuracy by 9% over the full precision network. The running results on the FPGA meet the expectations and achieve the required performance to classify four types of ECG signals, left bundle branch conduction block (L), right bundle branch conduction block (R), normal beat (N) and ventricular premature beat syndrome (V), which requires less storage parameter requirements and less resource usage than other quantization methods, and improves the computational speed of the CPU compared to the CPU by 1.5 times, the running time meets the real-time requirement, and is suitable for deployment on small, lightweight wearable devices with limited resources.
Key words : ECG signal;quantized CNN;knowledge distillation;FPGA

引言

我國(guó)心血管病(Cardiovascular Disease,CVD)發(fā)病率和死亡率仍在升高,在我國(guó)城鄉(xiāng)居民疾病死亡構(gòu)成比中,CVD占首位[1]。提前預(yù)防和診斷CVD是目前很重要的醫(yī)療問(wèn)題。24 h動(dòng)態(tài)心電圖可以在較長(zhǎng)時(shí)間內(nèi)對(duì)人體心臟安靜和活動(dòng)狀態(tài)下的心電圖變化情況進(jìn)行記錄、編集和分析,進(jìn)而了解心電圖的變化情況,可以作為CVD診斷的重要依據(jù)[2]。在心電信號(hào)自動(dòng)識(shí)別的領(lǐng)域,神經(jīng)網(wǎng)絡(luò)算法常常被用來(lái)作為分析的算法,這種分析算法常常采用的是一維的ECG信號(hào)[3]。而在算法中使用被轉(zhuǎn)為二維的ECG信號(hào)時(shí),更多的信息量給量化算法提供了更好的條件,也更適合于硬件實(shí)現(xiàn)[4]。本文設(shè)計(jì)了一種針對(duì)心電數(shù)據(jù)實(shí)時(shí)分類的量化神經(jīng)網(wǎng)絡(luò),并部署于FPGA上,驗(yàn)證了效果。該硬件化模塊具有小型化、準(zhǔn)確率高、計(jì)算速度快等特點(diǎn),適合于部署在便攜式心電監(jiān)測(cè)設(shè)備上。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://m.ihrv.cn/resource/share/2000005956


作者信息:

羅德宇,郭千禧,張懷誠(chéng),黃啟俊,王豪

(武漢大學(xué) 物理科學(xué)與技術(shù)學(xué)院,湖北 武漢 430072)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。