基于CNN-BiLSTM-Attention的工業(yè)數(shù)據(jù)中心IT設備能耗預測模型研究
電子技術應用
宋越1,靳晟1,林櫟2,高國強2,郭付展2
1.新疆農(nóng)業(yè)大學 計算機與信息工程學院;2.新疆電子研究所股份有限公司
摘要: IT設備的能耗直接影響到工業(yè)數(shù)據(jù)中心的電力消耗,預測IT設備能耗對優(yōu)化能源管理和資源規(guī)劃具有重要意義。然而,由于IT能耗數(shù)據(jù)呈現(xiàn)出非線性、非平穩(wěn)的特點,導致預測精度低。對此,結合卷積神經(jīng)網(wǎng)絡CNN、雙向長短期記憶網(wǎng)絡BiLSTM和注意力機制的優(yōu)勢,分別對IT設備能耗的局部特征、數(shù)據(jù)中深層次的關鍵信息進行提取,并根據(jù)自測IT設備能耗數(shù)據(jù)集構建基于CNN-BiLSTM-Attention的能耗預測模型,該模型的R2、MAE和RMSE分別為0.905 3、0.050 4、0.067 3,相較于現(xiàn)有的LSTM、BiLSTM和CNN-BiLSTM模型均有不同程度的提高,說明該模型可以應用于工業(yè)數(shù)據(jù)中心內(nèi)IT設備能耗的準確預測。
中圖分類號:TP391 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.246045
中文引用格式: 宋越,靳晟,林櫟,等. 基于CNN-BiLSTM-Attention的工業(yè)數(shù)據(jù)中心IT設備能耗預測模型研究[J]. 電子技術應用,2025,51(10):63-68.
英文引用格式: Song Yue,Jin Sheng,Lin Li,et al. Research on energy consumption prediction model of industrial data center IT equipment based on CNN-BiLSTM-Attention[J]. Application of Electronic Technique,2025,51(10):63-68.
中文引用格式: 宋越,靳晟,林櫟,等. 基于CNN-BiLSTM-Attention的工業(yè)數(shù)據(jù)中心IT設備能耗預測模型研究[J]. 電子技術應用,2025,51(10):63-68.
英文引用格式: Song Yue,Jin Sheng,Lin Li,et al. Research on energy consumption prediction model of industrial data center IT equipment based on CNN-BiLSTM-Attention[J]. Application of Electronic Technique,2025,51(10):63-68.
Research on energy consumption prediction model of industrial data center IT equipment based on CNN-BiLSTM-Attention
Song Yue1,Jin Sheng1,Lin Li2,Gao Guoqiang2,Guo Fuzhan2
1.College of Computer and Information Engineering,Xinjiang Agricultural University;2.Xinjiang Institute of Electronics Co.,Ltd.
Abstract: The energy consumption of IT equipment directly affects the power consumption of industrial data centers, and predicting the energy consumption of IT equipment is of great significance for optimizing energy management and resource planning. However, due to the non-linear and non-stationary nature of IT energy consumption data, the prediction accuracy is low. In this regard, by combining the advantages of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism, local features of IT equipment energy consumption and deep key information in the data are extracted separately. Based on the self tested IT equipment energy consumption dataset, an energy consumption prediction model based on CNN-BiLSTM-Attention is constructed. The R2, MAE, and RMSE of this model are 0.905 3, 0.050 4, and 0.067 3, respectively. Compared with existing LSTM, BiLSTM and CNN-BiLSTM models, this model has improved to varying degrees, indicating that this model can be applied to accurate prediction of IT equipment energy consumption in industrial data centers.
Key words : IT energy consumption prediction model;CNN-BiLSTM-Attention;industrial data center;deep learning
引言
數(shù)據(jù)中心是承載云計算、大數(shù)據(jù)、移動互聯(lián)網(wǎng)和智能終端不可或缺的處理數(shù)據(jù)的設施。隨著越來越多的服務和數(shù)據(jù)“上云”,數(shù)據(jù)中心的規(guī)模在不斷擴大、數(shù)量在不斷增長,因而產(chǎn)生了巨大的能源消耗[1]。隨著互聯(lián)網(wǎng)數(shù)字化進程加速推進,預計2024年全國數(shù)據(jù)中心的耗電量將在3 400億至3 600億度之間,其產(chǎn)生的巨大能耗給經(jīng)濟和環(huán)境帶來了壓力,因此構建綠色高效的數(shù)據(jù)中心[2]迫在眉睫。數(shù)據(jù)中心的管理者需要通過能耗預測的結果,幫助數(shù)據(jù)中心更有效地管理能源資源,降低成本和提高能耗[3]。傳統(tǒng)的數(shù)據(jù)中心能耗預測方法通常依賴經(jīng)驗法則和歷史數(shù)據(jù),這些方法的局限性在于它們難以捕捉到影響能耗的各種復雜因素,如環(huán)境參數(shù)變化[4]、電壓電流以及負載情況變化。因此,這些方法難以在多重因素交互作用且不斷變化的條件下對數(shù)據(jù)中心能耗進行高精度預測。
本文詳細內(nèi)容請下載:
http://m.ihrv.cn/resource/share/2000006808
作者信息:
宋越1,靳晟1,林櫟2,高國強2,郭付展2
(1.新疆農(nóng)業(yè)大學 計算機與信息工程學院,新疆 烏魯木齊 830052;
2.新疆電子研究所股份有限公司,新疆 烏魯木齊 830052)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載。
