《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 设计应用 > 基于CNN-LSTM的支撑电容容值软测量
基于CNN-LSTM的支撑电容容值软测量
2021年电子技术应用第9期
杨培盛1,付 宇1,李鸿飞2,初开麒2,王梦谦2,李政达2
1.济南轨道交通集团建设投资有限公司,山东 济南250014; 2.中车青岛四方车辆研究所有限公司,山东 青岛266033
摘要: 实时监测功率变流器中支撑电容的老化状态,及时发现并更换存在缺陷的电容,对提高功率变换器的可靠性具有重要意义。基于相关电压电流数据,通过建立数据集,确定网络模型参数和模型训练,最终得到基于CNN-LSTM的神经网络模型,并通过不同工况下的数据集对神经网络模型的准确性进行了验证。结果表明,该模型可对电容容值进行可靠预测。
中圖分類號: TN102;TM531
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.201128
中文引用格式: 楊培盛,付宇,李鴻飛,等. 基于CNN-LSTM的支撐電容容值軟測量[J].電子技術(shù)應(yīng)用,2021,47(9):16-19.
英文引用格式: Yang Peisheng,F(xiàn)u Yu,Li Hongfei,et al. Soft measurement of supporting capacitance based on CNN-LSTM[J]. Application of Electronic Technique,2021,47(9):16-19.
Soft measurement of supporting capacitance based on CNN-LSTM
Yang Peisheng1,Fu Yu1,Li Hongfei2,Chu Kaiqi2,Wang Mengqian2,Li Zhengda2
1.Jinan Rail Transit Group Construction Investment Co.,Ltd.,Jinan 250014,China; 2.CRRC Qingdao Sifang Rolling Stock Research Institute Co.,Ltd.,Qingdao 266033,China
Abstract: It is of great significance to monitor the aging state of the supporting capacitors in the power converter in real time and to find and replace the defective capacitors in time. In this paper, based on the relevant voltage and current data, through the establishment of data sets, the network model parameters and model training are determined. Finally, the neural network model based on CNN-LSTM is obtained. The accuracy of the neural network model is verified by the data sets under different working conditions. The results show that the model can reliably predict the capacitance value.
Key words : support capacitor;CNN-LSTM;reliability;neural network

0 引言

    近年來,電力電子系統(tǒng)的可靠性越來越引起社會各界的廣泛注意[1-2]。大量的研究及實踐表明,在軌道交通領(lǐng)域,實現(xiàn)軌道列車牽引系統(tǒng)的實時健康狀態(tài)監(jiān)測,做到及時的故障預(yù)警和提前維修[3-4],將大大提高系統(tǒng)的可靠性,節(jié)約維修成本。

    直流母線支撐電容作為牽引系統(tǒng)的關(guān)鍵部件,其健康狀態(tài)隨著投入運行年限的增加而變差,直流母線電容失效導(dǎo)致的列車系統(tǒng)停機甚至損毀給社會帶來了巨大的經(jīng)濟損失[5-6]。因此,支撐電容的狀態(tài)監(jiān)測技術(shù)成為了當前研究的熱點[7-8]。支撐電容的容值能夠表征其真實的健康狀態(tài)[9],本文提出了一種大功率變流器直流母線電容容值的在線監(jiān)測方法,利用數(shù)據(jù)訓(xùn)練得到基于卷積神經(jīng)網(wǎng)絡(luò)-長短期記憶網(wǎng)絡(luò)(Convolutional Neural Networks-Long Short Term Memory,CNN-LSTM)的神經(jīng)網(wǎng)絡(luò)模型[10],可以根據(jù)列車系統(tǒng)運行過程中采集到的實時運行數(shù)據(jù)進行支撐電容值的準確軟測量,對于實現(xiàn)支撐電容健康狀態(tài)在線監(jiān)測、提高功率變流器的可靠性具有重要意義。




本文詳細內(nèi)容請下載:http://m.ihrv.cn/resource/share/2000003737




作者信息:

楊培盛1,付  宇1,李鴻飛2,初開麒2,王夢謙2,李政達2

(1.濟南軌道交通集團建設(shè)投資有限公司,山東 濟南250014;

2.中車青島四方車輛研究所有限公司,山東 青島266033)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容