基于负载预测的车联网信道拥塞控制策略
2022年电子技术应用第3期
杨 戈1,2,朱永豪1
1.北京师范大学珠海分校 智能多媒体技术重点实验室,广东 珠海519087; 2.北京师范大学自然科学高等研究院,广东 珠海519087
摘要: 在车联网中,过高的车辆密度会造成信道拥塞,信道拥塞的发生会严重影响协同车辆安全系统的性能。针对此问题,设计实现了一种基于车联网信道负载预测的拥塞控制策略(Congestion Control Strategy based on Channel Load Prediction,C2SLP)。该策略分为3个模块,首先使用载波侦听多址访问协议中的检测功能获取信道闲忙状态进行负载评估,然后将所得结果代入自回归移动平均模型(Auto Regressive Integrated Moving Average,ARIMA)对下一时刻的信道负载值进行预测,最后将所得负载预测值与预设的标准值进行比较,根据对比结果使用功率控制算法调整传输功率,实现提前避免信道拥塞。仿真实验结果表明,C2SLP将信道占有率稳定在0.6左右,传输时延稳定在30 ms左右,明显优于UBRCC算法,C2SLP在控制信道拥塞的同时有效减少传输时延,确保数据包可靠发送,满足车辆安全应用需求。
中圖分類號: TN915.03
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.211996
中文引用格式: 楊戈,朱永豪. 基于負載預測的車聯(lián)網(wǎng)信道擁塞控制策略[J].電子技術(shù)應用,2022,48(3):64-67,72.
英文引用格式: Yang Ge,Zhu Yonghao. Congestion control strategy of VANET channel based on load prediction[J]. Application of Electronic Technique,2022,48(3):64-67,72.
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.211996
中文引用格式: 楊戈,朱永豪. 基于負載預測的車聯(lián)網(wǎng)信道擁塞控制策略[J].電子技術(shù)應用,2022,48(3):64-67,72.
英文引用格式: Yang Ge,Zhu Yonghao. Congestion control strategy of VANET channel based on load prediction[J]. Application of Electronic Technique,2022,48(3):64-67,72.
Congestion control strategy of VANET channel based on load prediction
Yang Ge1,2,Zhu Yonghao1
1.Key Laboratory of Intelligent Multimedia Technology,Beijing Normal University(Zhuhai Campus),Zhuhai 519087,China; 2.Advanced Institute of Natural Sciences, Beijing Normal University,Zhuhai 519087,China
Abstract: In the VANET, excessively high vehicle density will cause channel congestion, and the occurrence of channel congestion will seriously affect the performance of the cooperative vehicle safety system. Aiming at this problem, a C2SLP congestion control strategy based on the prediction of vehicle network channel load is designed. The strategy is divided into three steps. Firstly, use the detection function in the carrier-sensing multiple access protocol to obtain the busy and busy status of the channel, and perform load evaluation according to the proportion of the busy time of the channel. Then the obtained results are substituted into the autoregressive moving average model to predict the next channel load value at the moment. Finally the obtained load prediction value is compared with the preset standard value, and the power control algorithm is used to adjust the transmission power according to the comparison result to avoid channel congestion in advance. The simulation experiment results show that this strategy can stabilize the channel occupancy at about 0.6 and the transmission delay at about 30 ms. Compared with the UBRCC algorithm,this strategy can effectively reduce the transmission delay while controlling channel congestion, ensure the reliable transmission of data packets, and meet the requirements of vehicle safety applications.
Key words : VANET;load evaluation;load forecasting;power control
0 引言
近年來我國汽車總量持續(xù)增加,社會急需建立基于車聯(lián)網(wǎng)的新型智能交通管理系統(tǒng)。智能交通管理系統(tǒng)能夠?qū)Ξ斍暗缆方煌顩r進行實時監(jiān)控,對道路車輛進行交通疏導,保證車輛駕駛員的行車安全。
目前,5G網(wǎng)絡基本實現(xiàn)了全面部署,VANET(Vehicle Ad hoc Network)車聯(lián)網(wǎng)成為了各國家重點發(fā)展方向。2020年,歐盟、美國、俄羅斯等都將車聯(lián)網(wǎng)發(fā)展作為國家重點扶持項目,將車聯(lián)網(wǎng)全面部署作為國家重大目標。同樣地,我國也已經(jīng)將車聯(lián)網(wǎng)作為國家重點發(fā)展項目進行研究和推進,正在重點發(fā)展車聯(lián)網(wǎng)的自動駕駛技術(shù)和輔助駕駛技術(shù)產(chǎn)業(yè)化的研究[1-7]。
本文詳細內(nèi)容請下載:http://m.ihrv.cn/resource/share/2000004005。
作者信息:
楊 戈1,2,朱永豪1
(1.北京師范大學珠海分校 智能多媒體技術(shù)重點實驗室,廣東 珠海519087;
2.北京師范大學自然科學高等研究院,廣東 珠海519087)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
